Raman Spectroscopy of the Reaction of Sodium Chloride with Nitric Acid: Sodium Nitrate Growth and Effect of Water Exposure

Christopher D. Zangmeister and Jeanne E. Pemberton*

Department of Chemistry, University of Arizona, Tucson, Arizona 85721 Received: September 18, 2000; In Final Form: January 24, 2001

The reaction of powdered NaCl with HNO₃ was studied using Raman spectroscopy. NaNO₃ growth was monitored as a function of HNO₃ exposure in a flow cell. Mode-specific changes in the NO₃⁻ vibrational mode intensities with HNO₃ exposure suggest a rearrangement of the NaNO₃ film with coverage. In the absence of H₂O, intensities of NaNO₃ bands increase with HNO₃ exposure until a capping layer of NaNO₃ forms. The capping layer prevents subsequent HNO₃ from reacting with the underlying NaCl. H₂O exposure of NaNO₃-capped NaCl results in hydration of the surface to form an aqueous solution containing NaNO₃ and NaCl. Further exposure results in the formation of a thicker surface-adsorbed H₂O layer that is consistent with an aqueous NaNO₃ and NaCl solution. Upon exposure of hydrated NaCl to HNO₃, molecular HNO₃ and solid-state NaNO₃ are observed in the thin H₂O film.

Introduction

The evaporation of sea-salt aerosols is estimated to release $\sim 10^{12}$ kg of NaCl to the troposphere per year.¹ Many studies have shown a significant chloride deficit in these particles (30–80%) when compared to bulk seawater.^{2–5} This deficit has been attributed to reactions with inorganic nitrogen and sulfur oxide species.^{6–17} The reaction of particulate NaCl with these compounds is an important link between a natural process, the evaporation of sea salt aerosols, and an anthropogenic process, the formation of inorganic nitrogen and sulfur oxide species derived from the burning of fossil fuels.

Ultimately, these reactions generate the corresponding sodium salt and volatile chlorine compounds.⁶⁻¹⁷ Volatile atmospheric chlorine, such as reservoir HCl and ClONO₂, have been implicated in such processes as the destruction of stratospheric ozone and the initiation of free radical reactions of gas-phase organics.¹⁸

One extensively studied reaction is that of NaCl with HNO3

$$NaCl(s) + HNO_3(g) \rightleftharpoons NaNO_3(s) + HCl(g)$$
 (1)

This reaction is inherently heterogeneous. Many studies on this system have been reported in which the loss of gaseous reactants or the production of gaseous products were monitored.^{10–12,17} Far fewer studies^{14–16} have focused on the surface chemistry involved in this reaction. To illustrate the importance of the nature of the surface in this reaction, one needs only to consider the variation in reaction probability, γ (number of reactions per surface collision event), elucidated for this reaction on differently prepared surfaces using mass spectrometry.^{10,11,14,17} On well-ordered NaCl (100), γ values of 4×10^{-4} have been obtained. In contrast, on defective surfaces such as powdered NaCl, γ increases to $(1.3-5.5) \times 10^{-2}.^{10,11,14,17} \gamma$ values spanning a range of approximately 2 orders of magnitude clearly indicate the important role played by the surface in this reaction. On this basis, further surface-based investigations are warranted.

Previous surface studies of this reaction have been undertaken using X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), diffuse reflectance FTIR (DRIFTS), and atomic force microscopy (AFM). These studies have demonstrated the formation of a 1-2 monolayer uniform passivating layer of NaNO₃ upon initial exposure to dry HNO₃.^{14–17,19} This layer inhibits further reaction by prohibiting access of HNO₃ to the underlying NaCl. Subsequent H₂O exposure of the passivating layer results in its rearrangement to crystallites of NaNO₃ on the NaCl surface. This process has been shown in this laboratory to proceed through transient mobile features on the hydrated NaCl surface using AFM in real time.¹⁹ Although these features are presumed to be NaNO₃, no definitive data are in hand that unequivocally support this assignment. Thus, further studies are needed to completely elucidate the mechanistic pathway whereby this transformation occurs.

Toward this end, the effort reported here was undertaken in an attempt to better define the surface chemistry associated with the reaction of NaCl with HNO₃. Raman spectroscopy was chosen for this task on the basis of its molecular specificity, access to the entire frequency region wherein vibrations of these inorganic species are observed, and its relative freedom from spectral interference by water.

Experimental Section

Instrumentation. Raman spectra were acquired using 125 mW of 514.5 nm radiation from an Ar⁺ laser (Spectra Physics Model 164). A Minolta f/1.2 camera lens was used to collect scattered radiation at 90° with respect to the incident radiation. A Spex 1877 Triplemate spectrometer equipped with a 600gr/mm grating in the filter stage and a 1200 gr/mm grating in the spectrograph were used. The entrance slit of the spectrograph was set at 0.5 mm, the filter stage slit was set at 7.0 mm, and the spectrograph stage was 75 μ m. A Princeton Instruments RTE-1100-PB thinned, back-illuminated CCD camera of 1100 × 330 pixel format and cooled to -90 °C was used for detection.

^{*} Corresponding author. E-mail: pembertn@u.arizona.edu. Tel.: 520-621-8245. Fax: 520-621-8248.

Spectra were calibrated using Ar⁺ plasma lines. Curve fitting of Raman spectra was performed using the Grams 386 (Galactic Industries) program. Peak positions and widths were not restrained and were fit with a variable Gaussian–Lorentzian peak shape.

Scanning electron microscopy (SEM) images were acquired on a Hitachi S-2460N SEM instrument with an accelerating voltage of 20 kV. To ensure conductivity, all samples were coated with Au prior to analysis.

Materials. NaCl (Aldrich, >99.5%) was recrystallized in 75: 25 H_2O :ethanol solution and filtered. The collected solid was dried and stored at 550 °C to remove surface-bound H_2O . Measures were taken to ensure that contact with ambient air was minimized.

Scanning electron microscopy of the recrystallized NaCl crystals used here shows them to be well-defined cubes with $\sim 7 \ \mu m$ sides and angled corners. The surface crystallinity of NaCl is known to be influenced by the conditions under which precipitation is initiated.^{20–22} The (100) crystal face is the lowest-energy surface and is preferred upon recrystallization.^{20–22} Other low index faces are possible under conditions of fast precipitation and/or upon the addition of organic solvents to the recrystallization solution. On the basis of the SEM of the NaCl used here, the cube faces consist of the (100) face with corners cut at 45° resulting in (111) faces. The micrographs indicate that ~75% of these surfaces are NaCl (100), with the remaining ~25% as NaCl (111).

NaCl surfaces prepared by precipitation are relatively nonporous. Previous work has shown that the geometric surface area of NaCl powders is in good agreement with BET isotherm determinations.^{8–10} If perfect 7 μ m cubes are assumed, the geometric surface area of the powders used here is ~4 × 10³ cm²/g. Therefore, each sample for Raman spectroscopy consisted of 750 ± 50 cm² of surface area, or ~1.2 × 10⁻⁷ moles of exposed surface NaCl.

Dry HNO₃ vapor was prepared with a 1:2 (v/v) mixture of HNO₃ (Aldrich, 99%): H_2SO_4 (Aldrich, >98%).³ NaNO₃-capped NaCl was produced by exposing dry, recrystallized NaCl to dry HNO₃ in a sealed container for 12 h.

Procedures. Raman spectra were acquired using a flow cell built in-house. Approximately 0.2 g of NaCl powder was placed at the end of a Pyrex flow tube, and reactant headspace gas (HNO₃ or H₂O) was pumped through at $\sim 10^{-6}$ moles s⁻¹. (At this flow rate, the system may not be at equilibrium.) The rate of gas flow was determined after each experiment by measuring the time required to evacuate a known volume filled with H₂O.

The glass cell was positioned in front of the collection optics of the spectrometer, allowing the same sample volume to be interrogated throughout the experiment. Spectra were acquired as a function of time. Gas flow was stopped during spectral acquisition to minimize exposure of the powder to the headspace gas during spectral acquisition (0.5-2 min/spectrum). The gas flow rate $(1.1-1.3 \text{ mL s}^{-1})$ was much lower than the headspace volume flow (\sim 75 mL). It was assumed that the residence time of gas (60 s) in the flow cell was sufficient to saturate the flow gas. At these flow rates, 6 \times 10⁻⁶ moles of HNO₃ s⁻¹ (3.6 \times 10^{18} molecules cm⁻³) and 1 \times 10⁻⁵ moles of H₂O s⁻¹ (6.0 \times 10^{18} molecules cm⁻³) were delivered to the powder. When exposure at these flow rates occurs for a set time, exposure amounts can be determined in moles. Once normalized for surface area of the NaCl, exposure values can be determined and are reported throughout in units of moles per square centimeter.

Figure 1. Raman spectra from NaCl powder after exposure to dry gaseous HNO₃: (a) $\sim 1.0 \times 10^{-7}$, (b) $\sim 3.4 \times 10^{-7}$, (c) $\sim 1.0 \times 10^{-6}$, and (d) $\sim 2.5 \times 10^{-6}$ moles HNO₃ cm⁻² and (e) bulk crystalline NaNO₃.

Results & Discussion

NaNO₃ Passivating Layer Formation. Previous studies have demonstrated the formation of a passivating layer of amorphous NaNO₃ upon exposure of NaCl to dry HNO₃.¹⁴⁻¹⁷ AFM studies previously reported from this laboratory confirm the amorphous nature of this layer.¹⁹ Given the extreme sensitivity of the vibrational spectroscopy of oxyanions such as NO3⁻ to chemical environment, a manifestation of the amorphous nature of this NaNO₃ was expected in the Raman spectral response. Figure 1 shows Raman spectra of the formation of this NaNO₃ layer at various stages during exposure of NaCl to a flowing stream of HNO₃ of 8 \times 10⁻⁹ moles cm⁻² s⁻¹ (Figure 1a-d) and a spectrum of bulk crystalline NaNO3 (Figure 1e) for comparison. As shown in Figure 1a, NaNO₃ can be detected after exposure to as little as $\sim 1.0 \times 10^{-7}$ moles of HNO₃ vapor per cm² of NaCl surface area. The free NO_3^- ion is a member of the D_{3h} point group, with three Raman-active vibrational modes in bulk NaNO₃: the $\delta_{ip}(NO_3^-)$ at 725 cm⁻¹, the $\nu_s(NO_3^-)$ at 1068 cm⁻¹, and the $v_a(NO_3^{-})$ at 1385 cm⁻¹. All three bands are clearly observed in Figure 1a, and contrary to expectations, the peak frequencies for this amorphous NaNO3 are identical to those of crystalline NaNO₃. As shown by the spectra in Figure 1b-d, the NaNO₃ signals continue to increase with HNO₃ exposure up to 2.5×10^{-6} moles cm⁻²; however, subsequent exposure produces no further increase in NaNO₃ intensities, indicating completion of the passivating layer.

Upon closer inspection of these spectra, subtle coveragedependent changes in the vibrational response of the amorphous NaNO₃ emerge despite the similarity in peak frequencies with crystalline NaNO₃. Figure 2a shows plots of the intensities of two NO₃⁻⁻ modes, the $\nu_s(NO_3^{--})$ at 1068 cm⁻¹, and the $\delta_{ip}(NO_3^{--})$ at 725 cm⁻¹ as a function of HNO₃ exposure. The $\nu_s(NO_3^{--})$ response with coverage is well-behaved and can be fit to the Langmuir isotherm represented by the solid line in Figure 2a.

Figure 2. (a) Normalized intensity of $\nu_s(NO_3^-)$ and $\delta_{ip}(NO_3^-)$ as a function of HNO₃ exposure; (b) intensity ratio of $\nu_s(NO_3^-)$ to $\delta_{ip}(NO_3^-)$ as a function of passivating layer fractional surface coverage.

In contrast, the $\delta_{ip}(NO_3^-)$ response is unusual, exhibiting first an increase and then a decrease during formation of the passivating layer.

The well-behaved response of the $\nu_s(NO_3^-)$ allows estimation of fractional surface coverage by the passivating layer, assuming that the layer is completed as the $\nu_s(NO_3^-)$ intensity levels off. Using this estimate of surface coverage, a plot of the peak intensity ratio of the $\nu_s(NO_3^-)$ to the $\delta_{ip}(NO_3^-)$ as a function of surface coverage is shown in Figure 2b. This intensity ratio changes significantly as a function of NaNO₃ coverage despite the consistency of the peak frequencies. Specifically, this ratio changes by a factor of ~3 as a function of coverage, increasing from 6:1 for coverages less than ~0.6 ML to 18:1 upon completion of the passivating layer. In bulk NaNO₃, this ratio is ca. 11:1; thus, the observed values span a range from less than to greater than that of crystalline NaNO₃.

The spectral changes indicate different NO₃⁻ environments that change systematically with coverage of the amorphous layer. To rationalize these observations, one must consider the nature of the vibrational motions of each mode in the context of the mechanism of the passivating layer formation. These two vibrational modes interrogate different motions of the NO3⁻ ion. The $\nu_{\rm s}({\rm NO}_3^-)$ represents a symmetric breathing motion of all atoms in the plane of the ion while the angles between the N-O bonds remain constant. In contrast, the $\delta_{ip}(NO_3^-)$ represents bending of the ion through alteration of the N-O bond angles even though all N-O bonds remain within the plane of the ion. To understand how these different motions might be impacted by the chemical environment of the NaNO₃ passivating layer as it forms, one must know the mechanism by which this layer forms. The atomic motions corresponding to these vibrational modes and two possible extreme surface orientations of NO₃⁻ are shown in Figure 3.

The growth of this passivating layer has been imaged as a function of static HNO₃ exposure in previous AFM studies from this laboratory.¹⁹ During the initial stages of growth, the images show growth of NaNO₃ on step edges followed by growth on terrace sites. If it is assumed that step edge growth is complete prior to the coverage at which Raman spectra can first be

Figure 3. (a) Horizontal orientation of NO₃⁻ over Cl⁻ surface vacancy; (b) vertical orientation of NO₃⁻ inserted into Cl⁻ surface vacancy; (c) atomic motions involved in $\nu_s(NO_3^-)$; (d) atomic motions involved in $\delta_{ip}(NO_3^-)$.

Figure 4. Energy-minimized orientations of NO_3^- for (a) one Cl^- surface vacancy, (b) three Cl^- surface vacancies, and (c) five Cl^- surface vacancies.

observed, then analysis of the changes in intensity ratios must only involve NaNO₃ growth on the terraces. Preliminary modeling of this reaction on NaCl (100) terraces has been undertaken using force field energy minimization calculations available in version 2.0 of Cerius². Although admittedly a highly simplistic treatment, these preliminary calculations were undertaken using the Dreiding 2.11 force field.²³ This force field is regarded as the universal force field in the prediction of the structure and dynamics of organic and main-group inorganic molecules and has recently been applied to predict the orientation of molecules on surfaces.²⁴ For the studies reported here, these calculations are viewed only as a starting point; future efforts will utilize sophisticated force fields more applicable to these ionic surfaces.

In these calculations, a $5 \times 5 \times 3$ lattice of NaCl was created, and the bottom layer was fixed to the lattice spacing of crystalline NaCl. The other two layers of NaCl and the orientation and position of NO₃⁻ were allowed to change until the system converged. On NaCl (100) terraces, the growth of the NaNO₃ layer is envisioned to start through the production of HCl at isolated sites on NaCl leaving Cl⁻-deficient surface defects. The calculations of the initial stages of this reaction suggest that the NO₃⁻ species interact at these defects in an orientation in which the ion plane is parallel to the surface as shown in Figure 4a. In this orientation, the various components of the polarizability tensor for the $\nu_{\rm s}(\rm NO_3^-)$ and $\delta_{\rm in}(\rm NO_3^-)$ modes are expected to be perturbed from their values in crystalline NaNO₃ due to the proximity to the NaCl surface. These perturbations are manifest as an intensity ratio for these modes lower than that observed in the bulk crystalline solid.

As the surface reaction proceeds and more of the surface Cl^- is removed as HCl, an increasing number of surface NO_3^- species undergo a systematic change in orientation with coverage, first to a mixed-mode orientation as shown in Figure 4b

Figure 5. (a) Crystal structure of bulk NaNO₃; (b) energy-minimized top view of NaCl surface upon contact with bulk NaNO₃; (c) side view of panel b.

and finally to a perfectly vertical orientation as shown in Figure 4c. This reorientation produces a commensurate change in Raman intensity ratio of these vibrational modes, since the electronic environment dictating the polarizability tensor components is systematically altered. In the vertical NO₃⁻ orientation, one O atom of the ion is imbedded into the Cl vacancy on the surface such that the center of the NO₃⁻ plane is positioned adjacent to the Na⁺ in the upper atomic layer of the NaCl surface. The interactions produced by this arrangement apparently decrease the intensity of the $\delta_{ip}(NO_3^-)$ more than the $\nu_s(NO_3^-)$ based on the increase of this ratio (see Figure 2.)

Further evidence in support of this vertical NO_3^- arrangement in the final passivating layer comes from consideration of the crystal structure of bulk NaNO₃. As shown by the picture in Figure 5a, the structural motif of this salt is one in which the Na⁺ and NO₃⁻ exist in a linear arrangement in the *X*-*Z* plane. Thus, one concludes that NaNO₃ in the passivating layer has a structure as shown schematically in Figure 5b,c. The amorphous nature of the passivating layer is rationalized by the fact that the Na⁺-NO₃⁻ distance in bulk NaNO₃ is 3.24 Å but the Na⁺ - Cl⁻ distance in NaCl is only 2.75 Å, ~15% smaller. Thus, the NaNO₃ accommodated by the NaCl (100) surface cannot achieve its equilibrium crystalline spacing and, therefore, forms an amorphous state in which some of the NaNO₃ is displaced in the z-direction as shown by the side view in Figure 5c.

The kinetics of passivating layer formation can be extracted from the Raman band intensities as a function of HNO₃ exposure. Referring back to the plot of the $\nu_s(NO_3^-)$ intensity as a function of HNO₃ exposure shown in Figure 2a, one sees that the intensity levels off after ~350 s (1.6 × 10⁻⁶ moles cm⁻²) of HNO₃ exposure. Indeed, the solid line in Figure 2a is a Langmuir fit to these data, showing the well-behaved nature of this response. Previous work has shown this reaction to be pseudo-first order in HNO₃.^{10-13,16,17} The linear nature of a plot of ln {1 – $I[\nu_s(NO_3^-)]$ } as a function of HNO₃ exposure shown in Figure 6 verifies this reaction order. The rate constant determined from the slope of this plot is (1.18 ± 0.12) × 10⁻² mole⁻¹.

Reactions of a gas with a solid can also be described in terms of a reaction probability, γ , or the number of reactions per surface collision.^{10–13,16,17} Determination of γ requires knowledge of the collision rate, *C*, which can be determined from the

Figure 6. First-order rate plot (ln $\{1-[\nu_s(NO_3^-)]\}$ vs time) for the initial reaction of dry HNO₃ with NaCl.

following relationship:

$$C = A_{\text{surf}} P_{\text{gas}} / [RT/(2\pi M)]^{1/2}$$
 (2)

where A_{surf} is the surface area of the powder, P_{gas} is the vapor pressure of HNO₃ at STP (62.8 Torr), and *M* is the molecular weight of HNO₃. With *C* in hand, one can calculate γ from

$$\gamma = \frac{\mathrm{d[NO_3^{-}]}}{\mathrm{d}t} \frac{1}{C} \tag{3}$$

On the basis of our Raman spectral data, γ was determined to be $(5.9 \pm 0.8) \times 10^{-2}$. This result is the first spectroscopic elucidation of γ and is slightly larger than previously published values for powdered NaCl determined on the basis of HCl detection.^{10–13,16,17} It can be argued that the direct detection of the solid-phase product is preferable to gas-phase HCl monitoring for the determination of γ because it is not hampered by the retention of HCl through dissolution in surface H₂O that could potentially reduce the measured value of γ .

Variations in γ are expected due to the large number of variables (e.g., surface porosity, surface morphology, surface crystal structure, surface adsorbed H₂O, number of surface defect sites, sample history) that could affect the kinetics of this system. The large variation in γ between single crystal and powdered samples suggests that the kinetics of this reaction may depend on the presence of active surface sites. To understand the factors that govern the production of surface NaNO₃, this reaction can be considered as a two-step process, as shown below:¹⁶

$$HNO_{3} (g) \stackrel{k_{1}}{\underset{k_{-1}}{\longleftrightarrow}} HNO_{3} (ads)$$
(4)

$$HNO_{3} (ads) + NaCl (s) \stackrel{k_{2}}{\underset{k_{-2}}{\longleftrightarrow}} NaNO_{3} (s) + HCl (g)$$
(5)

In this model, the reaction is separated into the adsorption/ desorption of HNO₃ on NaCl (k_1, k_{-1}) and the reaction of adsorbed HNO₃ at a NaCl active site (k_2, k_{-2}) . The sticking (adsorption) coefficient for HNO₃ on NaCl has yet to be determined. Factors that govern this parameter may be surface crystal structure, step edge density, and H₂O coverage. Since the flowing stream used in this study quickly removes evolved HCl, the back reaction between HCl and NaNO₃ can be neglected. Thus, the effective rate constant, k_{eff} , can be described by the following relationship:

$$k_{\rm eff} = \frac{k_1 k_2}{k_{-1} + k_2} \tag{6}$$

Previous studies provide insight into the steps that govern this reaction and aid in the determination of the rate-limiting step in this process. Fenter et al. observed rapid uptake of HNO₃ and a delay in HCl release.¹⁷ When HNO₃ flow was stopped, 90–95% of the HNO₃ desorbed, indicating that k_{-1} is larger than k_2 .¹⁷ These observations suggest that HNO₃ adsorption is facile and HCl formation is limited by reaction 5. Assuming that the HNO₃ adsorption equilibrium is rapidly established, eq 6 simplifies to

$$k_{\rm eff} = \frac{k_1}{k_{-1}} k_2 = k_{\rm eq} k_2 \tag{7}$$

Assuming little dependence of HNO₃ (k_{eq}) on surface preparation, the rate of reaction 5, k_2 , is most likely related to the active site density of the surface.

Although the exact chemical nature of these active sites is unknown, they most likely involve surface H₂O. Furthermore, these sites must be continually regenerated for the surface reaction to continue. AFM measurements suggest that the surface reactivity is greatest at step edges;¹⁹ thus, these step edges are surmised to be the region of the surface with the highest density of active sites. Once reaction 5 has occurred at an active site, the formation of surface NaNO₃ results in reconstruction of the surface to accommodate the replacement of Cl⁻ by the sterically larger NO₃⁻. This reconstruction is thought to continually regenerate new active sites until the passivating layer is complete.

Effect of H₂O Exposure on the NaNO₃-Passivated Surface. Previous studies on this reaction have shown a significant rearrangement of the amorphous NaNO₃ layer upon exposure to H₂O.^{14–17,19} The effect of H₂O vapor on NaNO₃-capped NaCl was studied here with Raman spectroscopy. Upon exposure of the NaNO₃-capped surface to H₂O vapor at 1×10^{-5} moles of H₂O s⁻¹, a second $\nu_s(NO_3^-)$ band appears at 1052 cm⁻¹ as shown in the spectrum in Figure 7b; this band is assigned to the $\nu_s(NO_3^-)$ mode of solution-phase NO₃⁻. This band first becomes visible upon exposure of the powder to ~8 × 10⁻⁷ moles of H₂O cm⁻² and increases in intensity with H₂O exposure. After exposure to 3×10^{-6} moles of H₂O cm⁻², the spectrum in Figure 7c is observed which is consistent with a saturated aqueous solution of NaNO₃.

Previous work has shown that the frequency of the $\nu_s(NO_3^{-})$ mode of aqueous solution NaNO₃ is concentration-dependent.²⁵ In saturated aqueous solutions (~6 M NaNO₃), this mode appears at 1052 cm⁻¹ but shifts to lower frequencies with decreasing concentration (e.g., 1049 cm⁻¹ at ~0.5 M NaNO₃.)²⁵ The invariant frequency of the solution $\nu_s(NO_3^{-})$ mode on NaCl with increasing H₂O exposure is consistent with a thin H₂O film that remains saturated with NaNO₃ for all exposures up to 3.6 × 10⁻⁶ moles of H₂O cm⁻². Using minimum hydration numbers of 5 and 6 for NO₃⁻ and Na⁺, respectively,^{26,27} and assuming an ~10 Å NaNO₃ passivating layer.^{14–16} of bulk NaNO₃ density, a H₂O layer thickness of ~25 Å is estimated for minimum hydration of all NaNO₃ in the passivating layer.

Dissolution of NaNO₃ on the NaCl surface is reversible, as shown by the spectrum in Figure 7d. This spectrum was acquired on the same sample that gave the spectrum in Figure 7c after flowing dry air (RH $\leq 2\%$) through it. The re-emergence of

Figure 7. Raman spectra upon the exposure of NaNO₃-capped NaCl to H₂O. (a) Spectrum prior to H₂O exposure; spectra after exposure to (b) $\sim 8 \times 10^{-7}$ and (c) $\sim 3 \times 10^{-6}$ moles of H₂O cm⁻², and (d) the powder from panel c to dry air (RH $\sim 2\%$) for 7 min.

the solid-state $\nu_s(\rm NO_3^{-})$ band at 1068 cm⁻¹ after exposure to ${\sim}2~\times~10^3$ equivalent cell volumes of dry air indicates the precipitation of NaNO₃ from the thin H₂O layer as H₂O is removed. Interestingly, loss of the 1052 cm⁻¹ band is not complete even after 12 h of dry air flow through the powder. This observation is consistent with previous work that has shown that complete removal of surface H₂O from NaCl requires temperatures above 350 °C.²⁸

This H₂O removal process also results in changes in the nature of the solid-state NaNO₃ on the NaCl surface. The intensity ratio of the $\nu_s(NO_3^-)$ to $\delta_{ip}(NO_3^-)$ modes decreases from the 15:1 value characteristic of the fully formed amorphous passivating layer to the crystalline NaNO₃ value of 12:1. This observation is consistent with previous XPS^{14–16} and AFM¹⁹ work showing that surface hydration results in a precipitation-based growth of rhombohedral NaNO₃ crystals from amorphous NaNO₃ on NaCl (100).

The involvement of surface-adsorbed H₂O in the transformation of the amorphous NaNO₃ layer to crystalline NaNO₃ was further investigated by monitoring the ν (O–H) region as a function of H₂O exposure. Spectral results are shown in Figure 8. No detectable H₂O was observed prior to H₂O exposure, as shown in Figure 8a. Exposure of NaNO₃-capped NaCl to 2 × 10⁻⁶ moles of H₂O cm⁻² produces the spectrum shown in Figure 8b, with ν (O–H) bands from H₂O clearly evident. This spectrum corresponds to the surface state of NO₃⁻ indicated by spectrum Figure 7b, in which both dissolved NO₃⁻ and solid-state NaNO₃ coexist on the NaCl surface.

The intensity in the ν (O–H) region continues to increase with additional H₂O exposure, indicating an increased thickness of the surface adsorbed H₂O layer, Figure 8c. This spectrum corresponds to the NO₃⁻ state shown in Figure 7c, in which all NO₃⁻ is dissolved. It should be noted that the visual appearance

Figure 8. Raman spectra in ν (O–H) region upon the exposure of NaNO₃-capped NaCl to H₂O. (a) Spectrum prior to H₂O exposure; spectra after exposure to (b) $\sim 2 \times 10^{-6}$ and (c) $\sim 3 \times 10^{-6}$ moles of H₂O cm⁻²; (d) spectrum of aqueous solution saturated in NaCl and NaNO₃; (e) overlaid spectra from panels b (solid line), c (dashed line), and d (dotted line). Peak fits for four components shown below each spectrum.

of the NaCl powder with this amount of surface H_2O is such that it still appears solid, although some caking of the powder is now evident.

It is interesting to compare the spectra of the ν (O–H) region in Figure 8b,c with that of an aqueous solution saturated in both NaCl and NaNO₃ in Figure 8d. Although these spectra are similar, they are not identical (see overlaid spectra in Figure 8e), which clearly indicates the unique nature of the ultrathin H₂O layer existing on the NaCl surface in this system. A better understanding of differences between these spectra can be achieved by a more detailed analysis of the spectral components contained within the ν (O–H) envelope.

The complex shape of the ν (O–H) envelope has given rise to multiple interpretations and has been studied with Raman spectroscopy for over 30 years.^{27–35} This region is mainly composed of ν_s (OH) modes from ~3440–3600 cm⁻¹; a weak contribution from the ν_a (OH) is also observed at frequencies greater than 3630 cm⁻¹ in pure H₂O. The peak frequencies and relative intensities provide insight into the hydrogen bonding environment and degree of order within the H₂O film. In pure H₂O, this envelope can be fit with four components^{30,35} that have been attributed to an ice-like component (C₁) at 3230 cm⁻¹, an ice-like liquid phase (C₂) at 3420 cm⁻¹, a liquidlike amorphous phase (C₃) at 3540 cm⁻¹, and monomeric H₂O (C₄) at 3620 cm⁻¹.³⁰

The addition of certain ions disrupts hydrogen bonding, thereby increasing the intensities of the amorphous and monomer components (C₃ and C₄, respectively) relative to their intensities in pure H₂O. The intensity ratio of the C₁ mode to the C₂ mode is also sensitive to the extent of hydrogen bonding in solution. For example, the ratio in pure H₂O is ~1. However, the presence of certain structure-breaking ions disrupts hydrogen bonding,^{26,27,36} resulting in a C₁:C₂ ratio reduced to ~0.5.³⁰

The peak frequency and integrated intensity data for the spectra in Figure 8 and from single-component saturated

TABLE 1: Peak Positions for ν (O–H) Modes of Surface Bound H₂O and Bulk Aqueous Solutions. Peak Areas Are Shown in Parentheses

		component			
	C_1	C_2	C ₃	C_4	
NaNO ₃ -capped NaCl	3269	3440	3538	3621	
$(2 \times 10^{-6} \text{ moles of H}_2 \text{O cm}^{-2})$	(12)	(67)	(18)	(3)	
NaNO ₃ -capped NaCl	3263	3431	3513	3613	
$(3 \times 10^{-6} \text{ moles of H}_2\text{O cm}^{-2})$	(16)	(49)	(26)	(3)	
saturated NaCl + NaNO ₃	3255	3419	3493	3580	
	(25)	(49)	(16)	(10)	
saturated NaCl	3244	3394	3476	3588	
	(19)	(41)	(31)	(9)	
saturated NaNO ₃	3256	3404	3496	3586	
	(21)	(46)	(23)	(11)	

Figure 9. Normalized integrated intensity of the C₂ component of ν -(O–H) Raman spectral envelope as a function of H₂O exposure.

solutions of NaCl and NaNO₃ (spectra not displayed) are shown in Table 1. Several observations about these data are noteworthy. First, as the amount of surface-adsorbed H₂O increases, all four components shift to lower frequency. Second, the C₁:C₂ intensity ratio increases with H₂O exposure, while the C₄ component is unchanged and ~70% lower than observed for an aqueous solution saturated in both NaCl and NaNO₃. These changes are all consistent with an increase in hydrogen bonding character within the thin H₂O film with increasing amount.

The integrated intensity of the C₂ component as a function of H₂O exposure is shown in Figure 9. The C₂ component has the largest integrated intensity, and over a broad concentration range, is nearly invariant in intensity. The change in the slope of the C₂ component at $\sim 3 \times 10^{-6}$ moles of H₂O cm⁻² occurs at the H₂O exposure at which all of the solid NaNO₃ dissolves in the surface adsorbed water layer (Figures 7c and 8c.) This decrease in H₂O uptake by the surface at the point of total amorphous NaNO₃ dissolution is consistent with the metastability of this amorphous layer.

In reality, the NaCl surface will never be dehydrated as it is in the starting point of this and previous studies. Under most conditions in the atmosphere, NaCl is formed through flash evaporation of a small liquid aerosol droplet as it encounters regions of lower relative humidity. Temperatures required for complete H₂O removal from NaCl are not achieved in the terrestrial atmosphere.²⁸ Thus, formation of particulate NaCl from aqueous droplets leads to surface-bound H₂O under conditions of RH well below the NaCl deliquescence point (DP) (RH < 74%), and complete three-dimensional H₂O coverage, with time-dependent continuing condensation of H₂O, at RH values greater than the DP.

Therefore, to model NaCl surface processes that occur in the terrestrial atmosphere, H_2O must be added to the surface.

Figure 10. Raman spectra upon the exposure of deliquesced NaCl powder (exposure $\sim 1 \times 10^{-4}$ moles of H₂O cm⁻²) to (a) $\sim 5 \times 10^{-6}$ and (b) $\sim 5 \times 10^{-5}$ moles of HNO₃ cm⁻².

Toward this end, we have studied the reaction of NaCl with HNO₃ at a prehydrated NaCl surface. Such conditions were simulated by producing a well-hydrated surface with a substantial H₂O layer (total exposure of 1×10^{-4} moles of H₂O cm⁻²). This surface was then exposed to a flowing stream of dry HNO₃ vapor, and Raman spectra were monitored as a function of time. Exposure of prehydrated NaCl to 4.2×10^{-7} moles of HNO₃ cm⁻² produces the spectrum of predominately solid-state NaNO₃ shown in Figure 10a. However, several additional bands are observed that are can be attributed to molecular HNO3: the $\delta({\rm ONO})$ at 620–670 cm $^{-1},$ the $\nu_{\rm s}({\rm NOH})$ at 930 cm $^{-1},$ and the $v_{\rm s}({\rm NO}_2)$ at 1310 cm⁻¹.³⁷ Deprotonation of HNO₃ results in a change in symmetry from C_{2v} for HNO₃ to D_{3h} for NO₃⁻. Therefore, the Raman spectrum of free NO₃⁻ is dominated by the $\nu_s(NO_3^-)$ at 1046 cm⁻¹.³⁷ Thus, the band at 1049 cm⁻¹ can be attributed to NO₃⁻ from either dissolved NaNO₃, deprotonated HNO₃, or both.

HNO₃ is a strong acid that is readily ionized in the presence of H₂O. Irish et al. showed that in the absence of other electrolytes in solution, HNO₃ is 17% ionized with 1.5 H₂O molecules per HNO₃ and 63% ionized with 5 H₂O molecules per HNO₃.³⁷ In the presence of other electrolyte ions, which compete with the proton for hydration, the deprotonation process is inhibited. The extent of HNO₃ deprotonation depends on the number of H₂O molecules available for hydration. Obviously, the number of H₂O molecules on the NaCl surface in this thin film is limited by the H₂O exposure. The presence of molecular HNO₃ spectral bands suggests that the number of H₂O available to hydrate a dissociating proton is most likely not many more than 5 per HNO₃ and must be less than 12 per HNO₃, the number at which very little molecular HNO₃ exists in solution.³⁷ Furthermore, the NaCl surface H₂O is assumed to be saturated in NaCl prior to HNO₃ exposure. Thus, the HNO₃ must compete for H₂O for deprotonation with Na⁺ and Cl⁻ hydration. Assuming complete uptake of the HNO₃ by the surface and recognizing that the amount of surface H₂O is small, this thin H₂O layer is expected to be quite acidic despite incomplete HNO₃ dissociation. As shown by Clegg et al., the acidity of a surface H₂O layer would promote degassing of the HCl produced in the reaction of HNO₃ with the NaCl surface,^{38,39} driving this reaction to the right.

Finally, as shown by the spectrum in Figure 10b, the intensity of the solid-state NaNO₃ modes increases with additional HNO₃ exposure. However, spectral evidence for the existence of molecular HNO₃ (inset in Figure 10b) is still observed after exposure of the prehydrated NaCl surface to 4.2×10^{-6} moles of HNO₃ cm⁻² (1 order of magnitude more than the exposure in Figure 10a).

NaNO₃ precipitates at concentrations above 6.9 M in a solution saturated in both NaNO₃ and NaCl.⁴⁰ If a HNO₃ uptake coefficient of unity is assumed, the aqueous layer would be saturated in NaNO₃ in ~0.5 s, a time faster than can be explored with our Raman spectroscopy experiment. Thus, the existence of exclusively a solution NO₃⁻ layer on the NaCl surface cannot be ascertained with the current experimental arrangement.

Conclusions

Raman spectral results for the reaction of dry HNO_3 with NaCl surfaces confirm the previously observed^{14–16,19} initial

formation of an amorphous passivating layer of NaNO₃. The intensity ratio of two prominent Raman-active modes, the $\nu_s(NO_3^-)$ and the $\delta_{ip}(NO_3^-)$, for this amorphous layer is significantly different from that of bulk crystalline NaNO₃ and is a function of surface coverage. The $\nu_s(NO_3^-)$ mode intensity can be fit to a simple Langmuir isotherm, which suggests that the first step in this process is simple adsorption. Force field energy minimization calculations indicate reorientation of the NO₃⁻ species in this layer as it forms. The results of these calculations also predict an amorphous layer product due to the lattice mismatch between the NaNO₃ product and the NaCl surface.

The rate constant for amorphous layer formation and the corresponding reaction probability, γ , for this reaction have been determined for the first time from Raman spectral data. The γ value of 5.9×10^{-2} determined here for NaCl powders is similar to although slightly higher than previous estimates based on monitoring gas-phase products. The expected accuracy of this value determined from monitoring the solid-state product instead of the gas-phase product is noted.

H₂O-induced reorganization of this amorphous NaNO₃ layer by Raman spectroscopy clearly indicates the involvement of a thin H₂O layer, as previously hypothesized.^{14–16} Indeed, direct evidence for the presence of this layer can be observed in the ν (O–H) region of the vibrational spectrum. A detailed analysis of this spectral response suggests a unique environment that is not modeled by aqueous solution saturated with NaCl and NaNO₃. On the basis of spectral evidence of dissolved NO₃⁻ species, the growth of rhombohedral NaNO₃ crystals as previously observed^{15,19} most likely occurs by a precipitation-based mechanism.

Acknowledgment. The authors gratefully acknowledge support of this research by the National Science Foundation (CHE-0075813).

References and Notes

(1) Graedel, T. E.; Keene, W. C. Global Biogeochem. Cycles 1995, 9, 47.

- (2) DeMore, W. B.; Sandler, S. P.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina, M. J. *Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling*; Evaluation No. 12, JPL Publ. No. 97-4; Jet Propulsion Laboratory: Pasadena, CA, 1997.
 - (3) Peters, S. J.; Ewing, G. E. J. Phys. Chem. 1996, 100, 14093.
 - (4) Harkel, M. J. Atmos. Environ. 1997, 31, 417.

- (5) Kleeman, M. J.; Hughes, L. S.; Allen, J. O.; Cass, G. R. Environ. Sci. Technol. **1999**, *33*, 4331.
 - (6) Karlsson, R.; Ljungstrom, E. J. Aerosol Sci. 1995, 26, 39.
- (7) Gard, E.; Kleeman, M. J.; Gross, D. S.; Hughes, L. S.; Allen, J.
- O.; Morrical, B. D.; Fergenson, D. P.; Dienes, T.; Galli, M. E.; Johnson, D. L. Cosa, C. B. Parthan, K. A. Spinnes **1008**, 270, 1184
- R. J.; Cass, G. R.; Prather, K. A. Science **1998**, 279, 1184.
- (8) Vogt, R.; Finlayson-Pitts, B. J. J. Phys. Chem. 1994, 98, 3747.
 (9) Langer, S.; Pemberton, R. S.; Finlayson-Pitts, B. J. J. Phys. Chem. A 1998, 101, 1277.
- (10) Leu, M.; Timonen, R. S.; Keyser, L. F.; Yung, Y. L. J. Phys. Chem.
 1995, 99, 13203.
 - (11) Biechert, P.; Finlayson-Pitts, B. J. J. Phys. Chem. **1996**, 100, 15218.
 - (11) Dicellett, F., Findyson Files, D. J. S. Files, Chem. 1996, 100, 102.
 (12) Davies, J. A.; Cox, R. A. J. Phys. Chem. A 1998, 102, 7631.
 - (12) Davies, J. A., Cox, R. A. J. Phys. Chem. A 1996, 102, 7031.
 (13) Abbatt, J. P. D.; Waschewsky, G. C. G. J. Phys. Chem. A 1998,
- (15) Abbatt, J. T. D., Waschewsky, G. C. G. J. Thys. Chem. A 1996, 102, 3719.
- (14) Laux, J. M.; Fister, T. F.; Finlayson-Pitts, B. J.; Hemminger, J. C. J. Phys. Chem. 1996, 100, 19891.
- (15) Allen, H. C.; Laux, J. M.; Vogt, R.; Finlayson-Pitts, B. J.; Hemminger, J. C. J. Phys. Chem. **1996**, 100, 6371.
 - (16) Ghosal, S.; Hemminger, J. C. J. Phys. Chem. A **1999**, 103, 4777.
 - (17) Fenter, F. F.; Caloz, F.; Rossi, M. J. J. Phys. Chem. 1994, 98, 9801.
 (18) Seinfeld, J. H.; Pandis, S. N. Atmospheric Chemistry and Physics:
- From Air Pollution to Climate Change; John Wiley and Sons: New York, 1998.
- (19) Zangmeister, C. D.; Pemberton, J. E. J. Phys. Chem. B 1998, 102, 8950.
 - (20) Sunagawa, I.; Tsukamoto, K. J. Crystal Growth 1972, 15, 73.
 - (21) Knoppik, D.; Lsch, A. J. Crystal Growth 1976, 34, 332.
- (22) Hari Babu, V.; Bansigir, K. G. J. Crystal Growth 1970, 6, 192.
- (23) Mayo, S. C.; Olafson, B. D.; Goddard, W. A. J. Phys. Chem. 1990, 94, 88971.
- (24) Edelwirth, M.; Freund, J.; Sowerby, S. J.; Heckl, W. M. Surface Sci. 1998, 417, 201.
- (25) Irish, D. E.; Davis, A. R. Can. J. Chem. 1968, 46, 943.
- (26) Kameda, Y.; Saitoh, H.; Uemura, O. Bull. Chem. Soc. Jpn. 1993, 66, 1919.
- (27) Kameda, Y.; Sugawara, K.; Usuki, T.; Uemura, O. Bull. Chem. Soc. Jpn. 1998, 71, 2729.
 - (28) Barraclough, P. B.; Hall, P. G. Surf. Sci. 1974, 46, 393.
 - (29) Walrafen, G. E. J. Chem. Phys. 1962, 36, 1035.
 - (30) Walrafen, G. E. J. Chem. Phys. 1970, 52, 4176.
 - (31) Walrafen, G. E. J. Chem. Phys. 1971, 55, 768.
- (32) Luu, D. V.; Cambon, L.; Mathlouthi, M. J. Mol. Struct. 1990, 237, 411.
- (33) Maeda, Y.; Tsukida, N.; Kitano, H.; Terada, T.; Yamanaka, J. J. Phys. Chem. **1993**, 97, 13903.
 - (34) Yoshimura, Y.; Kanno, H. J. Raman Spec. 1996, 27, 671.
 - (35) Carey, D. M.; Korenowski, G. M. J. Chem. Phys. 1998, 108, 2669.
- (36) Driesner, T.; Seward, T. M.; Tironi, I. G. Geochim. Cosmochim. Acta 1998, 62, 3095.
 - (37) Ratcliffe, C. I.; Irish, D. E. Can. J. Chem. 1985, 63, 3521.
 - (38) Clegg, S. L.; Brimblecombe, P. Atmos. Environ. 1988, 22, 91.
 - (39) Brimblecombe, P.; Clegg, S. L. Atmos. Environ. 1988, 7, 1.
- (40) Silcock, H. L. Solubilities of Inorganic and Organic Compounds, Vol. 3. Ternary and Multicomponent Systems of Inorganic Substances, Part
- 2.; Pergamon Press: New York, 1978.